Communication: limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks.

نویسندگان

  • Philipp Thomas
  • Arthur V Straube
  • Ramon Grima
چکیده

It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Painless nonorthogonal expansions

Related Articles The cored and logarithm galactic potentials: Periodic orbits and integrability J. Math. Phys. 53, 042901 (2012) Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks J. Chem. Phys. 135, 181103 (2011) Approximate solutions to second order parabolic equations. I: Analytic estimates J. Math. Phys. 51, 103502 (2010) Univ...

متن کامل

The validity of quasi-steady-state approximations in discrete stochastic simulations.

In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-...

متن کامل

An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type o...

متن کامل

Longest Path in Networks of Queues in the Steady-State

Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...

متن کامل

Use and abuse of the quasi-steady-state approximation.

The transient kinetic behaviour of an open single enzyme, single substrate reaction is examined. The reaction follows the Van Slyke-Cullen mechanism, a spacial case of the Michaelis-Menten reaction. The analysis is performed both with and without applying the quasi-steady-state approximation. The analysis of the full system shows conditions for biochemical pathway coupling, which yield sustaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 18  شماره 

صفحات  -

تاریخ انتشار 2011